

Wohnungsbau: Langfristig planen – zukunftsfähig betreiben

Heizungs- und Energieversorgung Neue Wege gehen – Neue Perspektiven

Vita Dipl.-Ing. Jens Polanetz-Otto

Zertifiziert Für:

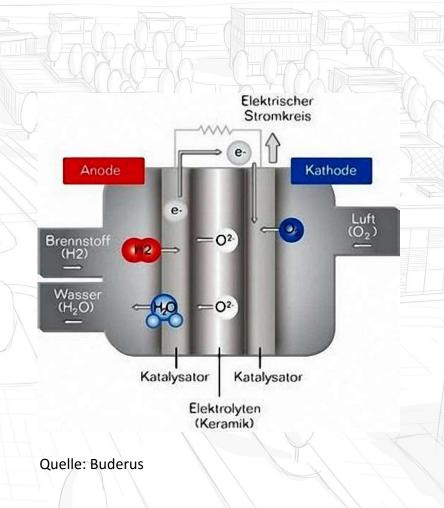
- §21 der EnEV 2009 / 2014
- KfW (Sanierung und Neubau / KMU)
- Energieausweise nach EnEV und DIN 18599
- Energie-Effizienz-Berater der KfW (ID 17099)
- Investition- und Förderbank Hamburg (E-Pass-Büro U200)
- Dena z. Ausstellung Energieausweis m. Gütesiegel (ID 232122)
- Qualitätssicherung im Bestand (Investitions- und Förderbank HH)
- Nachweise u.a. EEG, EEWärmeG, DIN 1946, DIN 13821
- Wirtschaftlichkeitsberechnung BHKW
- Lüftungskonzepte nach DIN 1946-6
- •

Die neue innovative Heizungstechnik

- Bis zu 36°C
- Regulierbar
- Persönliche Voreinstellung möglich
- Flexibel
- Kostengünstig verfügbar
- Auf Anfrage auch Verleih
- · Wir kommen auch zu Ihnen!

Patentnummer: SH-1234567GSNA!

Neue Wege durch Innovation?

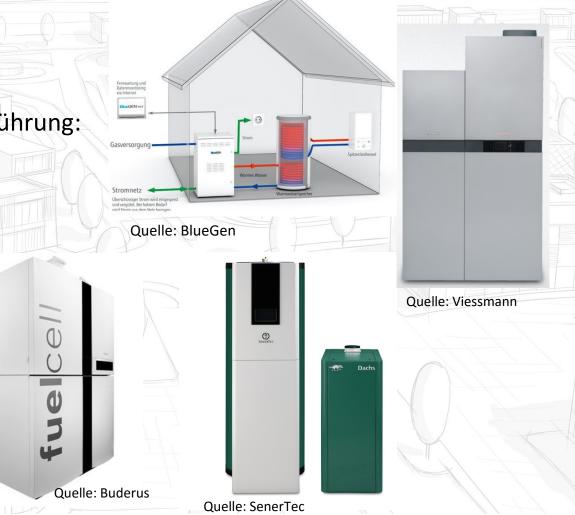

Die Brennstoffzelle

Funktionsprinzip:

Wasserstoff und Sauerstoff reagiert in einer exothermen Reaktion zu Wasser, dabei entsteht elektrische und thermische Energie.

Notwendigkeit:

- Kombination aus Brennwert und Brennstoffzelle (Grundbedarf + Spitzenbedarf)
- Fossiler Brennstoff für Gewinnung von Wasserstoff notwendig!


İ Ingenieurbüro Otto

Die Brennstoffzelle

Produkte kurz vor der Markteinführung:

- Viessmann Viotolor 300-P
- Buderus Logapower FC10
- SenerTec Dachs innoGen
- Elcore 2400
- HEXIS Galileo 1000N
- Junkers Cerapower BZH192I
- Solidpower EnGen 2500
- VAILLANT
- BlueGen

• /...

Blockheizkraftwerk

Funktionsweise:

Durch Verbrennen eines fossilen Energieträgers wird Wärme **UND** Strom produziert.

Hinweis: Rentabilität durch Eigen-Stromnutzung.

Quelle: www.staudt-haustechnik.de

Blockheizkraftwerk

Vorteile:

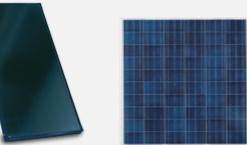
- Wirkungsgrad der Anlage von über 90%
- Verringerung der Energiekosten und Einsparung von bis zu 40% Primärenergie
- Lange Laufzeiten durch ausgereifte und erprobte Technik
- Wettbewerb vorhanden

Nachteile:

- Hohe Anschaffungskosten
- Wartungskosten
- mit fossilen Brennstoffen betreibt, sorgt zudem für verhältnismäßig hohe Emissionen
- Handling mit Zoll, EEG, EVU...

İ Ingenieurbüro Otto

•Gas-BW



Infrarotheizung

Infrarotheizung Decke
Quelle: Vitramo

•Solarthermie •PV-Anlage

SONNE

Quelle: Viessmann

•Wärmepumpe

Biomasse

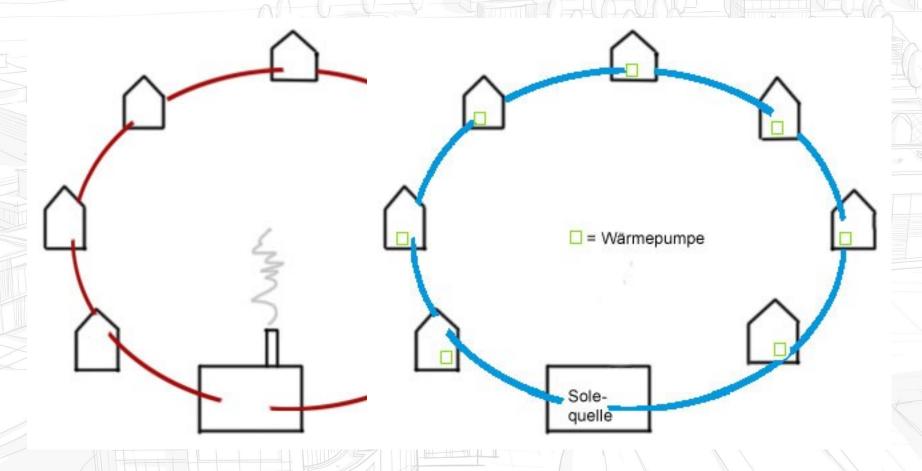
Quelle: Viessmann

Windgas Windstrom Stromnetz Stromkunde Strom Windgas Kunde mit Mikro-BHKW Windstrom Sauerstoff überschüssiger Windstrom Wasserstoff Windgas Erneuerbare Wasser Elektrolyseur Erdgasnetz Windgaswärmekunde

Quelle: Greenpeace

http://www.greenpeace-energy.de/windgas.html

Ingenieurbüro Otto


energie.effizient.optimieren.

Datum 23.03.2016

Folie 11 von 36

Das "kalte Netz"

Eisspeicher

Heizen mit Eis

Quelle: Viessmann

Galab Laboratories, Hamburg

Quelle:Viessmann, Boulahrout

Amortisation?

Einsatzgebiete

Welches System passt für welchen Gebäudetyp?

Innovation Contra Fakten Ingenieurbüro Otto energie.effizient.optimieren. Folie 15 von 36 Datum 23.03.2016

Innovation / Fakten

Einzuhaltende Kriterien:

- Energie-Einspar-Verordnung
- DIN EN 18599
- Erneuerbare-Energien-Wärmegesetz

DIN 4108

DIN EN ISO 10211 (WB)

EED

EPBD

DIN EN 12831-2

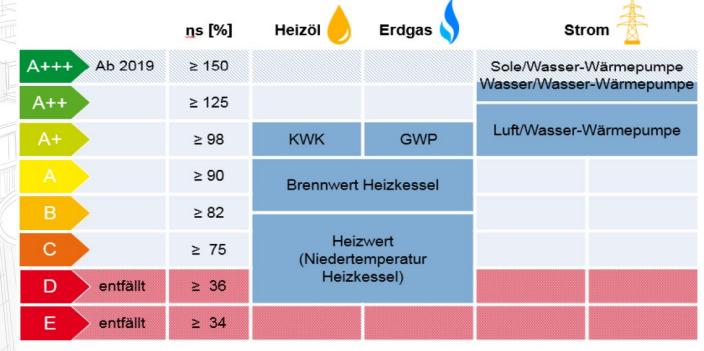
DIN 4701

ErP-Richtlinia IN

IN 1946-6

VDI / DVGW 6023

sommerl. WS


agie.effizient.op

36

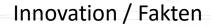
Innovation / Fakten

EPBD – EU Gebäuderichtlinie 2010 für energieeffiziente Gebäude seit 01.01.2016

Quelle: Buderus

Innovation / Fakten

Erneuerbare-Energien-Wärme-Gesetz

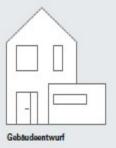

Erneuerbare Energien

- Solare Strahlungsenergie
 Deckungsanteil 15%
- Geothermie und Umweltwärme Deckungsanteil 50%
- KWK mit gasförmiger Biomasse Deckungsanteil 30%
- Flüssige Biomasse
 Deckungsanteil 50%
- Feste Biomasse

 Deckungsantail FOW
 - Ziel: Reduzierung Qp`

Ersatzmaßnahmen

- Nah/-Fernwärme aus erneuerbaren Energien entsprechend einer oder mehrerer der anderen Erfüllungsopt.
- KWK-Anlagen
 Deckungsanteil 50%
- Anlagen zur Nutzung von Abwärme Deckungsanteil 50%
 - Einsparung von
 Energieverlusten
 Unterschreitung EnEV um
 15% (U-Wert)



Anforderungen EnEV

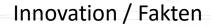
Transmissionshüllfläche / Volumen:

Schritt 1

Aus den maximalen U-Werten der geplanten Bauteile ergibt sich der Transmissionswärmeverlust des Referenzgebäudes.

Schritt 2

Der berechnete Transmissionswärmeverlust H', darf nicht größer sein als der Referenzwert.



Quelle: Viessmann

H',

H'_ = Transmissionswärmeverlust des Referenzgebäudes

H', = Transmissionswärmeverlust des geplanten Gebäudes

Anforderungen EnEV

Gebäudetechnik / Primär-Energiebedarf:

Schritt 3

Der Endenergiebedarf Q, des geplanten Gebäudes wird ermittelt (vereinfacht, ohne solare Gewinne etc.).

Endenergiebedarf des geplanten Gebäudes

Transmissionswärmebedarf

Lüftungswärmebedarf Trinkwasserwärmebedarf

Schritt 4

Die Integration der Referenzanlagentechnik und die Einbeziehung des Primärenergiefaktors f, ergibt den Primarenergiebedarf Q, au des Referenzgebäudes.

Q = Primärergiebedarf des Referenzgebäudes mit Referenzanlagentechnik

Der berechnete Primärenergiebedarf Q, darf nicht größer sein als

 $Q_T + Q_V + Q_{TW} = Q_E$

Q = Primärergiebedarf des Referenzgebäudes

Schritt 5

der Referenzwert.

Q = Primärergiebedarf des geplanten Gebäudes

Referenzgebäude

Quelle: Viessmann

Gebäude, geplant

Innovation / Fakten

Trinkwasserverordnung (TrinkwV 2001)

- Novellierung / Änderungsverordnungen 2011 / 2012 / 2015
- Einhaltung der allg. a.R.d.T. u.a.
 - Planung getrennte Leitungen (kalt / warm)
 - Bestimmungsmäßiger Betrieb ist einzuhalten
 - regelmäßige Wartung / Inspektion durchführen

Lösung für Planung Bestand:

- Gefährdungsanalyse

Erhöhter Planungsaufwand im Neubau

Quelle: Stiebel Eltron

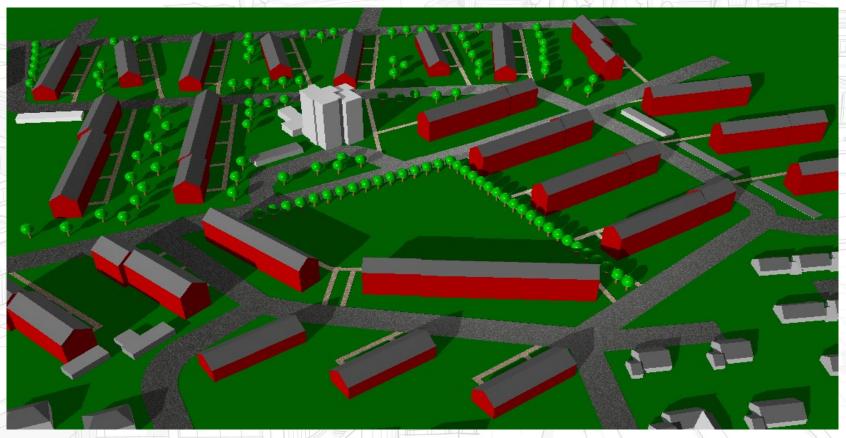
Innovation

Contra

Betriebswirtschaft

Ingenieurbüro Otto

energie.effizient.optimieren.

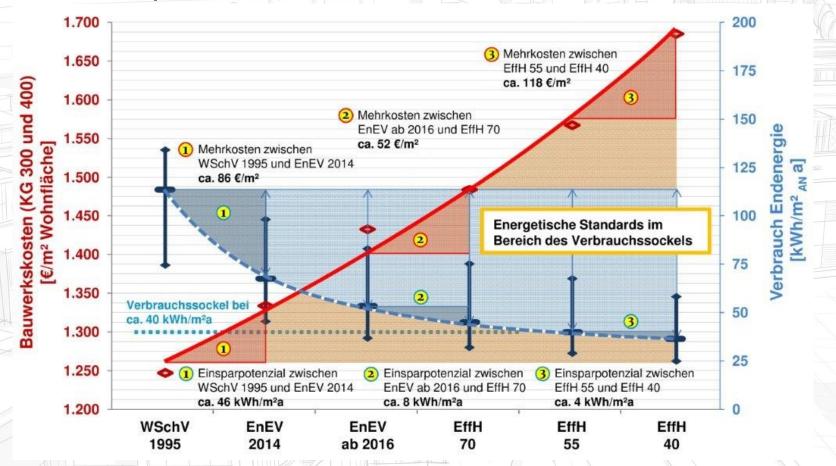

Datum 23.03.2016

Folie 23 von 36

Innovation / Betriebswirtschaft

Projekt: Uetersen

Ingenieurbüro Otto


energie.effizient.optimieren.

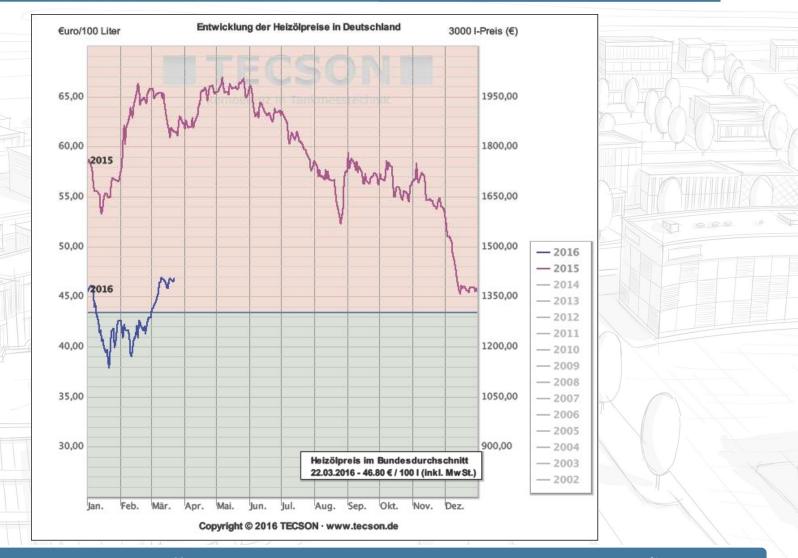
Datum 23.03.2016

Folie 24 von 36

Innovation / Betriebswirtschaft

Quelle: ARGE e.V.

Energiepreise in Deutschland - Heizöl, Gas und Holzpellets



- Heizöl ••• Holzpellets
- Gas

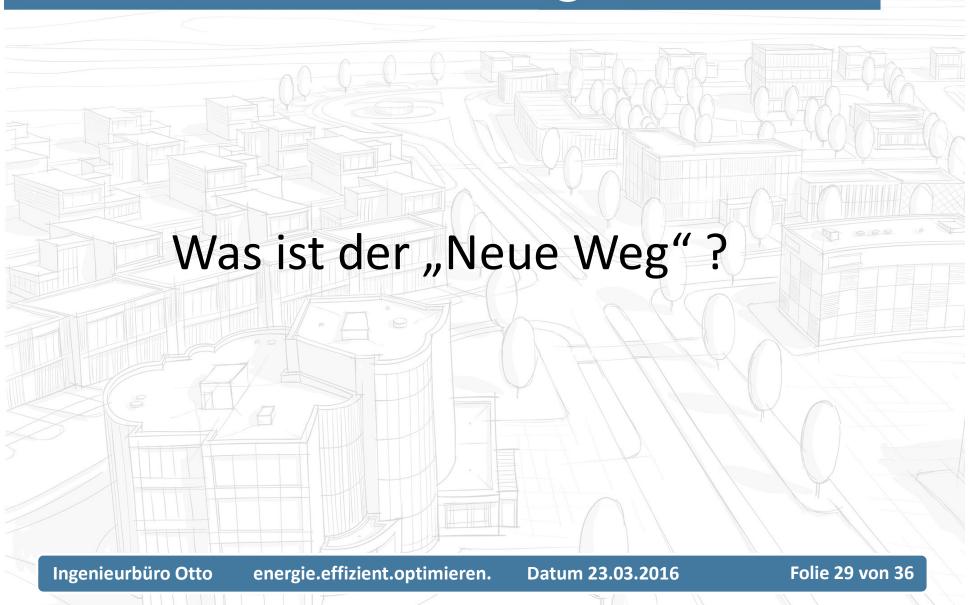
Preise zum jeweils 1. Tag des Monats bzw. Monatsmittel (Bezug: Heizwert Hi)

Datenquellen: Bundesministerium für Wirtschaft und Energie; C.A.R.M.E.N.e.V., Tecson-Digital, BRENNSTOFFSPIEGEL, destatis, e&u energiebüro gmbh

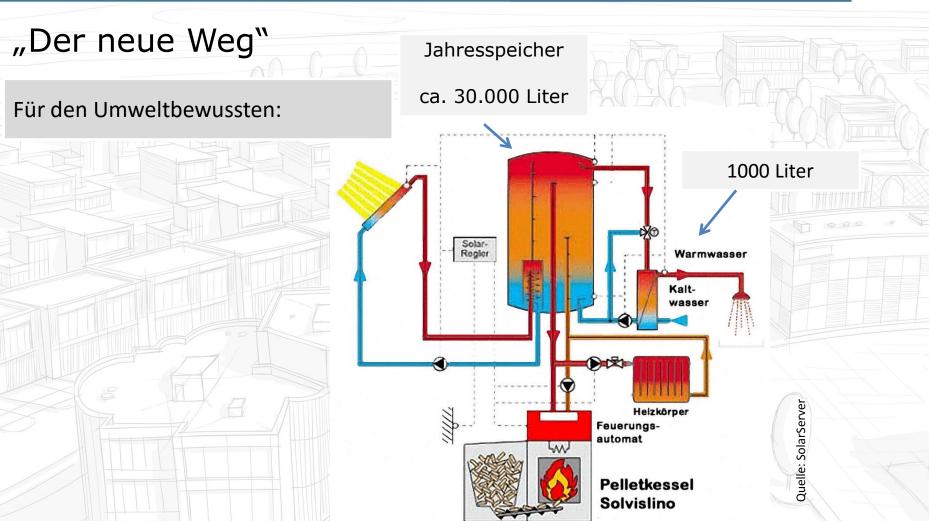
İngenieurbüro Otto

İ Ingenieurbüro Otto

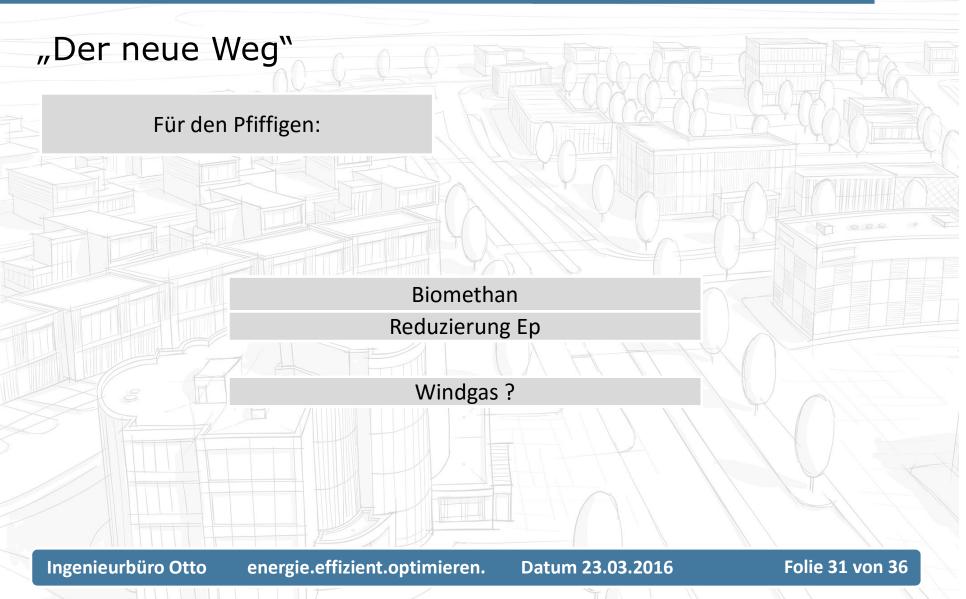
	Gas-Brennwert- technik	Öl-Brennwer- technik	Wärmepumpe Luft-Wasser	Wärmepumpe Sole-Wasser	Pelletkessel	Solarthermie	ВНКМ	PV
Investitions- Kosten	+	+	0	-	-	0	-	0
Hausanschluß notwendig	-	+	+	+	+	+	-	-
Lagerraum	+	-	+	+	-	+	0	+
Schornstein	-	-	+	+	-	+	-	+
Erdarbeiten	+	+	+	-	+	+	+	+
Energiekosten	0	0/+	0/-	0/-	+	++	+	++
Klimaschutz	0	0	+	+	++	++	0	++
EnEV/EEWärme	-	-	+	+	++	++	+	++

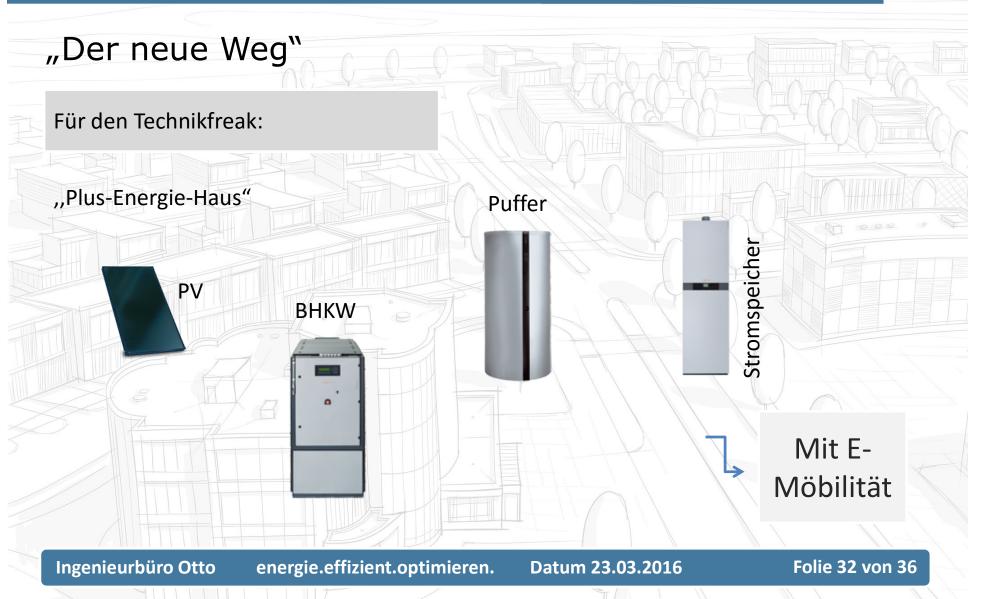

Ingenieurbüro Otto

energie.effizient.optimieren.


Datum 23.03.2016

Folie 28 von 36





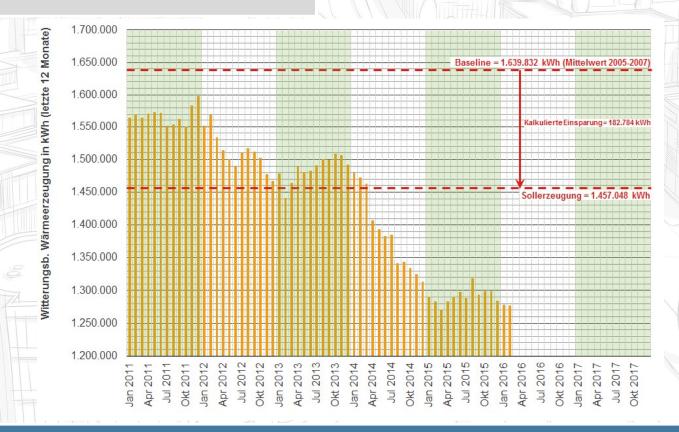
Für Kommunen und KMU's:

Energie-Liefer-Contracting Energie-Einspar-Contracting

Energie-Budget-Contracting

"Energie-Einspar-Contracting"

Auftraggeber / Auftragnehmer

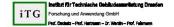

"Hardware" geht in Besitz des AG Contracting-Geber gibt "Einspargarantie"

"Win-Win"-Situation durch gem. Interesse

"Energie-Einspar-Contracting"

Stadt Sehnde (Niedersachsen) - Schule

Ingenieurbüro Otto


energie.effizient.optimieren.

Datum 23.03.2016

Folie 35 von 36

Literaturbeispiele

Leitfaden zur Planung neuer Hallengebäude nach Energieeinsparverordnung EnEV 2014 und Erneuerbare-Energien-Wärmegesetz 2011

Gefördert durch:

Bundesministorium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Förderungsteham (1914) 27-25-

Kostentreiber für den Wohnungsbau

Untersuchung und Betrachtung der wichtigsten Einflussfaktoren auf die Gestehungskosten und auf die aktuelle Kostenentwicklung von Wohrraum in Deutschland

Dietmar Walber

Timo Gniechwitz

Michael Halstenber

Vielen Dank für Ihre Aufmerksamkeit.

Für Fragen stehe ich Ihnen gerne zur Verfügung!

www.io-energie.de

Ingenieurbüro Otto

energie.effizient.optimieren.

Datum 23.03.2016

Folie 37 von 36